
Machine Instruction And Program UNIT-2 [Year]

CO Page 1

MEMORY LOCATIONS, ADDRESSES & INFORMATION

ENCODING

Computer stores data , instruction in the memory

 The data can be in the form of number or character

 Memory locations consist of millions of storage cells , Each cell is

capable of storing 1 bit information having value 0 or 1.

 Single bit represents small amount of information

 For this reason memory is organized so that Group of n bits, called as

a word of information can be stored and retrieved in a single basic

operation.

 Here n is the word length – ranging from 16 to 64 bits

 Accessing the main memory requires address for each

word location 0 to 2
k
 – 1;

 Main memory of this computer can have up to 2
k

 words.

Example:

If processor has 16 address line it can address up to 2
16

 =65536 memory

location

If processor has 24 address line it can address up to 2
24

 =16777216 16M

memory location

Machine Instruction And Program UNIT-2 [Year]

CO Page 2

CHARACTERS

 A Memory can also store character information such as text or

string.

 These characters can be alphabets, symbols like #, @, &,*,”

“,;, etc….

 Such characters are represented using 7 bit ASCII code.

 8 bit can store 1 character

 16 bit can store 2 characters

 32 bit can store 4 characters.

Character Format for 16bit

15 16bit 0

8bit 8bit

 CH1 CH0

Character Format for 32 bit

31 32bit 0

8bit 8bit 8bit 8bit

 CH3 CH2 CH1 CH0

Machine Instruction And Program UNIT-2 [Year]

CO Page 3

INSTRUCTION:

Program instruction are stored in memory . It usually consists of

OPCODE and OPERAND/S.

GENERAL FORMAT

OPCODE OPERAND/S

 Instruction

 8 bit OPCODE specifies 2
8=

256 different operations.

 OPERAND may be one of the register or it may be immediate value,

or it may be a memory location.

BYTE ADDRESSABILITY

 The word length of 8 bit is known as 1 byte.

 The word length of 16 bit is known as half word.

 The word length range from 16 bit to 64 bit is known as word.

 Each successive byte are located at address 0, 1, 2, 3…

 Each Successive words are located at address 0, 4, 8…..

Machine Instruction And Program UNIT-2 [Year]

CO Page 4

BIG-ENDIAN & LITTLE-ENDIAN ASSIGNMENT

BIG-ENDIAN:

Lower byte address are used for most significant byte of the word.

LITTLE ENDIAN:

 Lower byte address is used for least significant byte of the word.

Machine Instruction And Program UNIT-2 [Year]

CO Page 5

MEMORY OPERATION

 We know that both program instruction and data operands are

stored in memory.

 To execute the instruction processor reads the operand from memory

 After execution of instruction processor may store result in memory.

There are 2 types of operations

1) Load (read operation / fetch operation)

2) Store (write operation)

1) LOAD OPERATION:

 In load operation the content from specific memory location read by

the processor.

 For load operation processor sends address of the memory location

whose content is to be read and generate read signal to indicate read

operation

 Memory identifies the address of memory location and sends the

content to the processor.

Machine Instruction And Program UNIT-2 [Year]

CO Page 6

2) STORE OPERATION:

 For store operation processor sends the address of memory location

where the data is to be written.

 It generates write signal to indicate write operation or store

operation.

 Memory identifies the address of memory location and writes the

data sent by the processor.

INSTRUCTION AND INSTRUCTION SEQUENCING

 The operation of computer is controlled by set of instruction.

 Instruction is a command to processor to perform a given task.

 Typically program consists of varieties of instruction such as add two

number , compare two numbers or display character from keyboard

Machine Instruction And Program UNIT-2 [Year]

CO Page 7

Categories instruction:

1) Data movement instruction

 Eg.MOV, PUSH, POP,XCHNG

2) Arithmetic and logical instruction

Eg. ADD, SUB, MUL, DIV, OR, EX-OR

 3) Data processing instruction

Eg. ADC-add with carry

SBC-subtract with carry

4) Data program control instruction

 JZ-jump if accumulator is zero.

 JC-jump if carry flag is 1.

INSTRUCTION FORMAT

INSTRUCTION

OPCODE OPERAND/S

Instruction usually consist of 2 parts

1) OPCODE (Mnemonics): Specifies operation to be performed.

2) OPERAND: The contents operated by OPCODE.

Machine Instruction And Program UNIT-2 [Year]

CO Page 8

REGISTER TRANSFER NOTATION

 In computer system data transfer take place between processor &

I/O system or between processor register & memory.

 Processor register represented by R0, R1, R2, ----Rn-1.

 Memory location represented by MER,LOC,M…..

 I/O Register are represented by DATAIN, DATAOUT.

 The content of register or memory location denoted by using placing

around square bracket.

Example: 1) MOV LOC, R2

 This instruction moves the content of LOC moves to R2.

R2[LOC]

2) MOV SUM, R0

R0 [SUM]

Moves the content of sum moves to R0.

3) ADD R1, R2, R3

R3 [R1] + [R2]

This instruction adds the content of register R1 and R3 and copies to R3

Machine Instruction And Program UNIT-2 [Year]

CO Page 9

BASIC INSTRUCTION TYPES

1) THREE ADDRESS INSTRUCTION

2) TWO ADDRESS INSTRUCTION

3) ONE ADDRESS INSTRUCTION

4) ZERO ADDRESS INSTRUCTION

1) THREE ADDRESS INSTRUCTION:

Three address instructions can be represented by symbolically.

ADD A,B,C

 This instruction adds the content of A&B & copies the computed result

to OPERAND C

NOTATION: C [A] + [B]

 In this instruction operand A&B are source operand & operand C is

destination.

GF

OPCODE SOURCE1 SOURCE2 DESTINATION

2) TWO ADDRESS INSTRUCTION:

Two address instructions can be represented by symbolically.

ADD A,B

 This instruction adds the content of A& B & copies the computed result

to operand B & overwrites the previous content.

NOTATION: B[A]+[B]

In this instruction operand A & B is both source B destination.

Machine Instruction And Program UNIT-2 [Year]

CO Page 10

GF

OPCODE SOURCE1 SOURCE2/DESTINATION

3) ONE ADDRESS INSTRUCTION

One address instructions can be represented by symbolically.

ADD B

This instruction adds the content of B to the processor register called

accumulator (R0) & copies the computed result to R0 and overwrites the

previous content.

NOTATION: R0 [B] + [R0]

GF

OPCODE SOURCE

EXAMPLE: LOAD A

This instruction copies the content of memory location A to the

accumulator register (R0)

NOTATION: R0 [A]

Example : STORE B

This instruction copies the content of Accumulator register (R0) to the

memory location B

NOTATION: B[R0]

4) ZERO ADDRESS INSTRUCTION: in zero address instruction

operands are define implicitly.

Example: PUSH A [1 operand instruction]

PUSH B[1 OPERAND instruction]

ADD [Zero operand instruction].

Machine Instruction And Program UNIT-2 [Year]

CO Page 11

INSTRUCTION EXECUTION & STRAIGHT LINE SEQUENCE

 I

 I+1

 I+2

 A

 B

 C

1) MOV A, R0

2) ADD B, RO

3) MOV C, R0

 The above three instruction computes C[A]+[B]

 These are stored in continues memory location such as I, I+1, I+2…

 Operand & sum appears at a different memory location.

 Processor executes the program with the help of PC(program

counter)

 PC holds address of next instruction to be executed,

 To begins the execution, program counter points to the address of

first instruction.

 Then CPU control circuit uses the information of PC to fetch &

executes the instruction.

 Instruction executed in the order of increasing address in known as

straight line sequence.

MOV A, R0

ADD B, RO

MOV C, R0

OPERAND 1

OPERAND 2

RESULT(SUM)

Main Memory Unit

Contents

Machine Instruction And Program UNIT-2 [Year]

CO Page 12

INSTRUCTION EXECUTION CYCLE/PHASE

Processor carried out 3 cycle to execute instruction

1) INSTRUCTION FETCH CYCLE:

 In this cycle instruction is fetch from memory location who’s

address is in PC.

 This instruction is placed in the IR of the processor.

2)INSTRUCTIONS DECODE CYCLE:

 OPCODE of the instruction is stored in IR & is decoded to determine

which operation is to be performed

3)INSTRUCTION EXECUTION CYCLE:

 In this cycle, specified operation is performed by the processor.

 The arithmetic operation like Addition ,subtraction, multiplication

,division & logical operation like OR, AND, NOT, EX-NOR …..etc.

Machine Instruction And Program UNIT-2 [Year]

CO Page 13

BRANCHING

 Suppose , you would like to add ‘n’ numbers stored in continues

memory location such as num1, num2, num3,… num n

 A separate add instruction is used to add the content of R0.

 After all number has been added result is places in memory location

sum.

Machine Instruction And Program UNIT-2 [Year]

CO Page 14

 We can avoid repeated use of ADD instruction for adding ‘n’

numbers in memory by using conditional branch instruction.

 This reduces program length.

 Very less amount of memory is required to store the program.

 The Register R0 holds of sum of n numbers by successive addition of

each number to it,

 Register R1 is used as a counter to determine number of time loop is

executed.

Machine Instruction And Program UNIT-2 [Year]

CO Page 15

 Register R2 holds address of next number to be added

 M represents content of memory location

 The program execution continues in straight line sequence until

encounter branch >0

 If condition is true PC points to ADD [M],RO & execute the

instruction and also decrement R1 because R1 holds total number of

count

 R2 is incremented to point to next number ,This process is repeated

until R1 s zero (0)

CONDITION CODES [FLAG REGISTER/FLIP FLOP]

 It shows status of the result when you perform arithmetic and logical

operation

Four commonly used flags are

N(negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z(zero) Set to 1 if the result is 0; otherwise, cleared to 0

V(overflow) Set to 1 if arithmetic overflow occurs; otherwise,

cleared to 0 (over flow occur when the result of arithmetic operation is

outside the range)

C(carry) Set to 1 if a carry-out results from the operation;

otherwise, cleared to 0

Machine Instruction And Program UNIT-2 [Year]

CO Page 16

Addressing modes

Definition : The way in which operand of the instruction is specified

Types of addressing mode .

 Register addressing mode

 Absolute addressing mode

 Immediate addressing mode

 Indirect addressing mode

 Index addressing mode

 Relative addressing

 Auto increment mode

 Auto decrement mode

Register addressing mode:

 Operand is content of CPU Register , Name of the register given in

instruction.

Example : MOV R1,R2

This instruction copies the content of register R1 to R2.

Example : ADD R1,R0

This instruction adds the content of register R1 and R0

Absolute addressing mode

 Address is Explicitly specified in the instruction.

Example : MOV 2000,A

This instruction copies the content of memory location 2000 to A

Example : MOV LOC,R2

Copies the content of memory location LOC into Register R2

Machine Instruction And Program UNIT-2 [Year]

CO Page 17

Example : ADD 3000,B

This instruction copies the content of memory location 3000 to B

Immediate addressing mode

 Operand is given explicitly specified in the instruction.

Example: MOV #2000,R0

This instruction copies immediate value 2000 to the register R0.

A common convention is use , the pound sign (#) in front of value of the

operand to indicate that this value is to be used as immediate operand

Indirect addressing mode

 The effective address of the operand is content of register or

main memory location , whose address is given explicitly in the

instruction

Example : MOV (R0),A

This instruction copies the content of memory location pointed by register

R0 to A

Example : MOV B,(LOC)

This instruction copies the content of B to the memory location pointed by

(LOC).

Example: ADD (R1),R2

This instruction adds the content of memory location pointed by register

R1 to R2

Machine Instruction And Program UNIT-2 [Year]

CO Page 18

Example: indirect addressing through memory location

 This instruction fetches the operand from the address, pointed by the

A and adds them to R0

Example : Add (R1), R0 (this mode is often called as register indirect

mode)

This instruction fetches the operand from the address, pointed by the

contents of the register R1 and adds them to R0

Example : Add (B), R0

This instruction fetches the operand from memory location pointed by

‘B’ and adds them to R0.

ADD (A),RO

.

.

.

.

 B

.

.

.

.

OPERAND

A

B

Machine Instruction And Program UNIT-2 [Year]

CO Page 19

Index addressing mode

 In this scheme effective address is generated by adding constant

value to the specified register.

 This constant value is called displacement or offset.

 Index register symbolically represented as X(R)

 Where X is displacement or constant and R is any register

Example : MOV 20(R1),R0

Where R1=2000

EA=X+R (i.e EAeffective address)

20+2000=2020

Relative addressing

Effective address is determined by using PC in place of GPRS.

Back: ADD (M),R0

…………………..

……………………

……………………

JNZ Back

Auto increment mode

 The effective address of the operand is the contents of a register

specified in the instruction.

 After accessing the operand, the contents of this register are

automatically incremented to the next value.

 This increment is 1 for byte sized operands, 2 for 16 bit operands and

so on.

E.g. Add (R2) +, R0

Here are the contents of R2 are first used as an E.A. then they are

incremented.

Machine Instruction And Program UNIT-2 [Year]

CO Page 20

Auto decrement mode:

 The effective address of the operand is the contents of a register

specified in the instruction.

 Before accessing the operand, the contents of this register are

automatically decremented and then the value is accessed.

E.g. Add - (R2), R0

Here are the contents of R2 are first decremented and then used as an E.A.

for the operand which is added to the contents of R0.

The auto increment addressing mode and the auto decrement addressing

mode are widely used for the implementation of data structures like Stack

Assembly language

Define assembler :It translate assembly level language into equivalent

machine language program.

Source file object code

User written in

assembly

Level program

Machine level

language consist

of binary

numbers

0s and 1s

Assembler

Machine Instruction And Program UNIT-2 [Year]

CO Page 21

Formats of Assembly level language

Syntax

 Here each instruction separated by space.

 Every new instruction start from new line.

 If label is not used then : should not used .

 Mnemonics represents operation to be performed .

 If there are 2 or more operand they should be separated by

comma(,)

 Semicolon(;) indicates comment

Assembler directives

Definition : Assembly level language program composed of 2 statement

 Assembler

 Directive

Assembler: It translate assembly level language into equivalent machine

language program.

Directive :That directs the assembler during assembly process for which no

machine code is generated.

Label :Mnemonics operand1,operand2;comment

Machine Instruction And Program UNIT-2 [Year]

CO Page 22

Types of Assembler directives

 Data control directive

DB (define byte) (1Byte)

DW (define word) (2 Byte)

DD (define double word) (4Byte)

DQ (define quad) (8 Byte)

DT (define ten byte) (10 Byte)

Example :

Total DB 0

Above statement reserve 1 byte of memory for variable total and initialize

value is 0

Total DB ?

Above statement reserve 1 byte of memory for variable total and assign

value is unknown

Total DB 10H,20H,30H,40H

Above statement reserve 4 byte of memory for variable total and initialize

value is 10,20,30,40

MES DB “welcome”

Above statement reserve 7 byte of memory for the variable MES and

initialize the value is welcome

Machine Instruction And Program UNIT-2 [Year]

CO Page 23

 DUP(Duplication directive)

This directive can be used to initialized several location and assign value to

these location.

GF:

Total DB 2 dup(00)

It reserve 2 byte for the variable total and initialized by value 0

BLIST DB 3,4,5, 5dup(99),88,88

It reserve 10byte for variable BLIST and initialized by value 3,4,5,

99,99,99,99,99,88,88

 EQU (equate)

It is used to declare symbols , to which some constant value is

Assigned such symbol is called macro symbol

GF:

Example :

NUM EQU 100

It declare the symbol ,NUM with value 100

Assembler replace 100 when symbol NUM is Appear

Variable_Name data_type num dup(value)

Symbol_name equ expression

Machine Instruction And Program UNIT-2 [Year]

CO Page 24

 ORIGIN

 This assembler directive tells the assembler that where to place the

block of data in memory or where to start loading of object program

in memory.

 It specifies starting memory location for data or object code

 ORIGIN 100

This directive loads the object program or data in memory starting from

location 100

 PROC (procedure)

This directive is used to define the procedure , procedure name must be

present and must be unique

There are 2 types of procedure

 NEAR :it can be called within segment.

 FAR: it can be called from any segment

Example :

IFACT PROC FAR

It define IFACT as FAR type it cannot be called from any segment.

HEX2ASCCI PROC NEAR

It define HEX2ASCCI as NEAR type it cannot be called within segment.

HEX2ASCCI PROC

………

HEX2ASCCI ENDP

Procedure_name PROC[NEAR/FAR]

Machine Instruction And Program UNIT-2 [Year]

CO Page 25

Simple basic input output operation

 User can give the information to the processor using keyboard.

 User can see the result or output with the help of display unit.

 The transfer of data between keyboard ,processor, display unit is

called input output data transfer or I/O data transfer

Fig shows typical bus connection for keyboard ,processor and display

device .

 DATAIN and DATAOUT are the register by which processor reads

the content from keyboard and send the data for the display .

 Data transfer rate from keyboard to CPU typically 5 character /sec.

 Data transfer rate from CPU to display unit 50,000 character /sec.

 Both of the rate much slower than speed of the processor that execute

million of instruction per sec.

Machine Instruction And Program UNIT-2 [Year]

CO Page 26

 When key is pressed corresponding character code stored in

DATAIN register and SIN status bit is set to 1, to indicate value

character code is available in DATAIN register .

 Processor check the SIN bit when it is found SIN=1, It reads the

content of DATAIN register after completion of read operation SIN

is automatically cleared to 0.

 When character is transferred from processor to DATAOUT

register SOUT status bit are used.

 Processor check SOUT bit , if SOUT is 1 processor transfer the data

out register

 The display device reads the content from data out register .

