

UNIT -1 : Introduction To ‘C’ Language

Brief history of C language

C was developed at Bell Laboratories in 1972 by Dennis Ritchie. Many of its principles

and ideas were taken from the earlier language B and B's earlier ancestors BCPL and CPL.

CPL (Combined Programming Language) was developed with the purpose of creating a

language that was capable of both high level, machine independent programming and would

still allow the programmer to control the behaviour of individual bits of information. The one

major drawback of CPL was that it was too large for use in many applications. In 1967, BCPL

(Basic CPL) was created as a scaled down version of CPL while still retaining its basic

features. In 1970, Ken Thompson, while working at Bell Labs, took this process further by

developing the B language. Finally in 1972, a co-worker of Ken Thompson, Dennis Ritchie,

returned some of the generality found in BCPL to the B language in the process of developing

the language we now know as C.

In 1983, the American National Standards Institute (ANSI) formed a committee to establish a

standard definition of C which became known as ANSI Standard C. Today C is in widespread

use with a rich standard library of functions.

C programming language was developed by Dennis Ritche in 1972.

C language is improved version of B language where B language is improved version of

BCPL(Basic Combined programming Language)

The letter „C‟ is the second letter of BCPL. Hence C stands for “combined”.

C is a high level language.

C can be used for developing application programs and OS and also for processing

scientific and engineering data.

Features of C language

1. C supports variety of data types.

2. It supports powerful operators.

3. It has rich set of built-in functions.

4. It has 32 keywords/reserved words.

5. C is highly portable.

6. Allows user to add functions to C library.

7. C is faster than BASIC

8. C is case sensitive.

9. Highly flexible in developing application programs and OS.

10. It supports pointers.

C character set.

Character set: The character set is the fundamental raw material of any language and they are

used to represent information. Like natural languages, computer language will also have well

defined character set, which is useful to build the programs.

Character Set Consists Of:

Types Character Set

Lowercase Letters a-z

Uppercase Letters A to Z

Digits 0-9

Special Characters !@#$%^&*

White Spaces Tab Or New line Or Space

 Valid C Characters : Special Characters are listed below:

Symbol Meaning

~
Tilde

! Exclamation-mark

Number-sign

$ Dollar-sign

% Percent-sign

^
Caret

& Ampersand

* Asterisk

(Left-parenthesis

) Right-parenthesis

_ Underscore

+ Plus-sign

|
Vertical bar

\
Backslash

` Apostrophe

–
Minus sign

=
Equal to sign

{
Left brace

}
Right brace

[
Left bracket

]
Right bracket

: Colon

”
Quotation mark

;
Semicolon

<
Opening angle bracket

>
Closing angle bracket

?
Question mark

,
Comma

.

Period

/
Slash

Variables and Identifiers:

 Variables:

Variable in C Programming is also called as container to store the data. Variable name may

have different data types to identify the type of value stored. Suppose we declare variable of

type integer then it can store only integer values. Variable is considered as one of the building

block of C Programming which is also called as identifier.

A Variable is a name given to the memory location where the actual data is stored.

Variables are those whose value may vary during program execution.

Variables are represented by symbolic names.

Example: num1, sum, total.

Examples for valid variable names:

Rama

Gptmbl_

_1947

key_12

pralaya12

Examples for invalid variable names

12_diode: invalid because first letter cannot be a digit.

nav@gmail: invalid because it contains a special character @.

continue: invalid because continue is a keyword.

Naveen kumar: invalid because it contains a special character(blank space).

 Identifiers:

Identifiers are the names of variables denoting values, labels, functions, arrays etc.

Identifier must be unique. They are created to give unique name to identify it during the

execution of the program. For example:

http://www.c4learn.com/c-programming/c-tokens-keywords-identifiers/
http://www.c4learn.com/c-programming/c-tokens-keywords-identifiers/

Here, money and accountBalance are identifiers.

Also remember, identifier names must be different from keywords. You cannot use int as an

identifier because int is a keyword.

Rules for writing an identifier:

1. A valid identifier can have letters (both uppercase and lowercase letters), digits and

underscores.

2. The first letter of an identifier should be either a letter or an underscore. However, it is

discouraged to start an identifier name with an underscore.

3. There is no rule on length of an identifier. However, the first 31 characters of

identifiers are discriminated by the compiler.

 Built-in Data Types

Data types refers to the type and size of data associated with variables.

Built in data types are also known as fundamental or basic data types.

C data types can be divided into:

int money;

double accountBalance;

https://www.programiz.com/c-programming/c-variables-constants

The four built in data types are,

1. char

2. int

3. float

4. double

 char

• The variable of char data type holds a character constant. A character constant is a c

character enclosed within a pair of single quotes.

• Char data type reserves 1 byte of memory for the variable storage.

• Example: char s1,s2;

Here s1 and s2 are variables of char data type.

A character denotes any alphabet, digit or special symbol used to represent information.

Below figure shows the valid alphabets, numbers and special symbols allowed in C.

 int

Integers are whole numbers that can have both positive and negative values but no decimal

values. Example: 0, -5, 10

• A variable of int data type holds integer numbers.

• int data type reserves 2 bytes of memory for the variable storage.

• Example: int n1, n2;

Here n1 and n2 are variables of int data type.

 float

Floating type variables can hold real numbers such as: 2.34, -9.382, 5.0 etc.

• A variable of float data type holds real (fractional) numbers.

• float data types reserves 4 bytes of memory for the variable storage.

• Variable of float data type holds a number with six decimal digits of precision.

• Example: float length, height;

Here length and height are variables of float data type.

 Double

• A variable of double data type holds real or fractional numbers with high precision

than float data type .

• In double data type the fractional numbers are stored in exponent form.

• Variable of double data type holds a number with ten decimal digits of precision.

• double data type reserves 8 bytes of memory for the variable storage.

• Example: double voltage, percentage;

Here voltage and percentage are variables of double data type.

Note: By default a real number is treated as a double.

 Variable Definition, Declaration.

Variables are simply names used to refer to some location in memory – a location that holds

a value with which we are working.

• Variables are those whose value may vary during program execution.

A variable declaration indicates the data type of the variables and number of memory

locations required for variable storage.

Double type variables can hold real numbers such as: 475.25, -78.85, 345.0 etc.

Any variable to be used in the program must be declared using declaration statement.

General syntax: data_type variable_list;

The data types can be int, float, double, char etc.

Examples for variable declarations.

1. int marks1, marks2;

2. float average;

Here int and float are data types.

marks1, marks2 and average are variables.

 C Key Words-Rules & Guidelines for Naming Variables.

 C Keywords or reserved words.

• Keywords are those whose meaning is already defined in C compiler.

• Keywords are also called as reserved words.

• Keywords are written in lower case.

• Keywords cannot be used as identifiers. Compilers show error message when

keywords are declared as variables/ constants.

• They cannot store values

• C has 32 keywords.

Example : int, float, char ,if etc.

List of 32 keywords :

auto double int struct break else long

switch case enum register typedef char extern

return union const float short unsigned continue

for signed void default goto sizeof do

volatile if static while

 Rules and guidelines for naming variables:

1) A variable name can contain digits, alphabets and underscores.

2) The first character must be an alphabet or underscore.

3) Maximum number of characters in variable name is 8.

4) Variable names are case sensitive.

5) Variable name must not contain any special character except underscore.

6) Variable name must not be a reserved word.

Arithmetic operators and Expressions.
An operator is a symbol which operates on a value or a variable. For example: + is an

operator to perform addition.

C programming has wide range of operators to perform various operations.

 Arithmetic operators

Arithmetic operators perform arithmetic operations like addition, subtraction,

multiplication and division .Arithmetic operators are as shown in below.

Symbol used Operations

+ (plus) Adds two numbers

- (minus) Subtract two number

* (asterisk) Multiplies two number

/ (slash) Divides two numbers

% (percent) gives remainder of
integer division

• These operators are called binary operators because they operate on two operands.

• +,-,* ,& ,/ operators operate on int, float and double data type variables.

The following table shows all the arithmetic operators supported by the C language. Assume

variable A holds 10 and variable B holds 20, then :

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = 10

∗ Multiplies both operands. A ∗ B = 200

∕ Divides numerator by de-numerator. B ∕ A = 2

% Modulus Operator and remainder of after an

integer division.

B % A = 0

++ Increment operator increases the integer value
by one.

A++ = 11

-- Decrement operator decreases the integer value

by one.

A-- = 9

 Arithmetic expressions

Arithmetic expression contains numeric variables and constants associated with arithmetic

operators.

Ex; 2*x-3*y+z

Modes of Arithmetic Expressions.

There are 3 types

1. Integer mode arithmetic expressions.

2. Real (floating – point) mode arithmetic expression.

3. Mixed mode arithmetic expression.

1. Integer mode arithmetic statement /expression.

This expression contains integer operands (constants or variable). An arithmetic operation

between

integer operands results in integer value only .

Ex; int A,B,Sum;

Sum=A+B;

2. Real mode arithmetic statement/expression.

These expressions contain real type (floating –point or double data type) operands. An

arithmetic operation between real operands results in real value only.

Ex; float a, b, sum;

sum =a+b;

3. Mixed mode arithmetic statement/expression

These expressions contain mixture of int and real data type operands. An arithmetic operation

between integer and real operands results in real value only.

int total =10

float avg ,sum =55.6

avg = sum /total ;/*Avg gets real/fractional value*/

 Constants and Literals.

Constants refer to fixed values that the program may not alter during its execution.

These fixed values are also called literals. Constants can be of any of the basic data types like

an integer constant, a floating constant, a character constant, or a string literal.

Types of C Constants

C constants can be divided into two major categories:

(a) Primary Constants

(b) Secondary Constants

These constants are further categorized as shown in Figure

 Precedence and Order of Evaluation.

The pre-defined order in which the arithmetic operations are carried out in an arithmetic

expression is called the precedence of arithmetic operators.

Hierarchy rules are given below.

0. Zero =>contents within parenthesis are evaluated first.

1. First => unary minus operator(-)

2. Second => multiplication, division and modulus operators(*,/,%)

3. Third => addition, subtraction operators (+,-)

4. Last => the assignment operator(=)

If the expression contains the operators of same hierarchy, then the expression is

evaluated from left to right.

If the expression contains many parentheses, then contents of inner most parenthesis

is evaluated first, the next innermost as second step and so on.

Example:

 2 + 1 * 3 - 4 % 3 * 1 + 16 / 2 % 5

 2 + 3 - 4 % 3 * 1 + 16 / 2 % 5

 2 + 3 - 1 *1 + 16 / 2 % 5

 2 + 3 - 1 + 16 / 2 % 5

 2 + 3 - 1 + 8 % 5

 2 + 3 - 1 + 3

 5 – 1 + 3

 4 + 3

 7

 Simple assignment statement

An assignment statement gives a value to a variable. For example,

x = 5;

gives x the value 5.

The value of a variable may be changed. For example, if x has the value 5, then the

assignment statement

x = x + 1;

will give x the value 6.

The general syntax of an assignment statement is :

 variable = expression;

https://www.cis.upenn.edu/~matuszek/General/JavaSyntax/variables.html
https://www.cis.upenn.edu/~matuszek/General/JavaSyntax/expressions.html

 Basic input/output statement

C supports standard built-in functions to read the data from input devices (like keyboard) and

to display the data on output devices (like monitor).

These functions are classified as :

1. Formatted I/O functions

scanf() and printf()

2. Unformatted I/O functions

getch(), getche(),getchar(),gets(), putch(),putchar(),puts().

Format specifier/ Conversion specifiers:

Format specifiers indicate the data type of the value to be read or displayed when used

in formatted I/O functions (scanf() and printf()).

The list of format specifiers and associated data types are listed below.

Format specifier Data type

%d decimal integer(signed)

%f floating-point

%c character constant

%s string constant

%u unsigned decimal integer

%o unsigned octal number

%x unsigned hexadecimal number

%ld long decimal number

%e Floating point number in exponent
form

 Formatted I/O function

These use format specifiers like (%d,%f,%c) to specify the data type of the variable to be

read or displayed. scanf() and printf() are formatted I/O functions.

scanf() function:

• It is an input function

• It is used to read the value from keyboard.

• scanf stands for scan formatted or scan function.

The general form or general syntax

scanf(“control string”,arg1,arg2,arg3,……argn);

As shown above scanf() function contains two parts :control string and argument list

Control string:

It contains format specifiers to indicate the data types of the values to be read. These format

specifiers are %d,%f,%c etc.

Format specifiers are always included within double quotes.

Argument list

This contains variables names into which the read values are stored.

The data type of format specifiers and variables must match.

Example:

1) scanf(“%d”, &num1);

Here one integer is read from keyboard and stored in the variable num1.

2)scanf(“%d%d”,&a,&b);

Here two integer values are read and stored in the variables a and b.

printf() function

• It is an output function

• It is used to display the values or text message on monitor.

• printf stands for print formatted or print function.

The general form or general syntax

printff(“control string”,arg1,arg2,arg3,……argn);

As shown above printf() function contains two parts :control string and argument list

Control string:

It may contain format specifiers or any text message or both. These format specifiers are

%d,%f,%c etc.

Format specifiers and text messages are always included within double quotes.

Argument list

This contains variables names whose values are to be displayed.

The data type of format specifiers and variables must match.

Example:

1) printf(“Hardwork is the key to success”);

output

Hardwork is the key to success

2) float a=56.565

Printf(“ The area of the circle is=%f”,a);

output

The area of the circle is=56.565000

 Unformatted I/O function

These do not use format specifiers .The default data type is char. These are used for reading or

displaying the value of character constant or string constant. Examples: getch(), getche(),

getchar()/fgetchar(), putch() and puts().

getch()

➢ It is an unformatted input function.

➢ It is used to read a character constant from keyboard.

➢ It does not echo typed character on the screen.

Ex: char p;

p=getch();

getche()

➢ It is an unformatted input function.

➢ It is used to read a character constant from keyboard.

➢ It echoes typed character on the screen.

Ex: char p;

p=getche();

getchar/fgetchar()

➢ It is an unformatted input function.

➢ It is used to read a character constant from keyboard.

➢ It echoes typed character on the screen.

Ex: char p;

p=getche();

gets()

➢ It is an unformatted input function.

➢ It is used to read a character string from keyboard.

➢ End of the string is indicated by pressing ENTER key

putch()

➢ It is an unformatted output function.

➢ It is used to display a character constant on monitor.

Example: putch(„g‟);/* it will display g on the monitor*/

puts()

➢ It is an unformatted output function

➢ It is used to display a sequence of characters(string) on monitor.

Example: puts(“ Hi! Good morning”);

It will display Hi! Good morning on the monitor

 Simple 'C' programs.

1. /*Program to find sum of two variables*/

#include<stdio.h>

#include<conio.h>
void main()

{

int a,b,c; //declaration of variables

printf(“enter 1st integer value\n”);

scanf(“%d”,&a);

printf(“enter 2nd integer value\n”);

scanf(“%d”,&b);

c=a+b;

printf(“sum of given values is %d\n” , c);

getch();

}

Output:

enter 1st integer value

10

enter 2nd integer value

20

sum of given values is 30

2. /*Program to swap the values of 2 variables without using third variable*/

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

int A, B;

printf("Enter value of A and B \n");

scanf("%d%d", &A,&B);

printf(“Before swapping A=%d and B=%d \n”,A,B);

A=A+B; /*formula*/

B=A-B;

A=A-B;

printf("After swapping A=%d and B=%d \n", A, B);

getch();

}

Output

Enter value of A and B

-34

47

Before swapping A=-34 and B=47

After swapping A=47 and B=-34

3. write a C program to read 3 integers and to print sum and average of three integer numbers.

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

int a,b,c,sum;

float average;

printf("Enter any 3 integer numbers\n");

scanf("%d%d%d", &a,&b,&c);

sum=a+b+c;

average=sum/3;

printf(“The sum of 3 numbers =%d”,sum);

printf(“The average of three numbers=%f”,average);

getch();

}

Output

Enter any 3 integer numbers

5

20

12

The sum of 3 numbers =37

The average of three numbers=12.333333

4. Write a C language to accept temperature in Fahrenheit and to convert it in to centigrade.

Formula: C=(F-32)/1.8

#include<stdio.h>

#include<conio.h>

void main()

{

clrscr();

float fah_temp,cent_temp;

printf("Enter the temperature value in Fahrenheit \n");

scanf("%f", &fah_temp);

cent_temp=(fah_temp-32)/1.8;

printf(“Equivalent temperature value in centigrade =%f”,cent_temp);

getch();

}

Output

Enter the temperature value in Fahrenheit

68.0

Equivalent temperature value in centigrade =20.000000

 Algorithms – Definition and Characteristics.

An algorithm is a finite set of instructions for solving a problem.

 Simple algorithms.

1. Algorithm to find sum of 2 numbers.

Step 1. Start

Step 2. Read n1.

Step 3. Read n2.

Step 4. Sum=n1+n2.

Step 5. Print sum.

Step 6. Stop.

2. Algorithm to find sum and average of 3 numbers.

Step 1. Start

Step 2. Read n1,n2,n3.

Step 3. Sum=n1+n2+n3.

Step 4. avg=(n1+n2+n3)/3.

Step 5. Print sum.

Step 6. Print avg.

Step 7. Stop.

 Flow chart – Type of flow chart.

A flowchart is a pictorial representation of an algorithm in which steps are drawn

in the form of different shapes of boxes and the logical flow is indicated by

interconnecting arrows.

1.15. Simple flow charts

 Flowchart to find sum of two numbers.

 Flowchart to find sum and average of three numbers.

UNIT -2 : Decision making- Branching and Looping

C Operators

1. Conditional Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment and Decrement Operators

6. Bitwise Operators

7. Special Operators

8. Arithmetic operators

Conditional Operators: A ternary operator pair “ ? : ” is used to construct

conditional expressions of the form

exp1 ? exp2 : exp3

where exp1,exp2 and exp3 are expressions.

The ? : Operators works as follows

• exp1 is evaluated first.

• If it is true, then the exp2 is evaluated and becomes the value of the

expression.

• If exp1 is false then exp3 is evaluated and becomes the value of the

expression.

Example: a=10, b=15;

x = (a>b) ? a : b;

In this example x is assigned the value of b expression a>b is evaluated to false.

	UNIT -1 : Introduction To ‘C’ Language
	Features of C language

	C character set.
	Variables and Identifiers:
	Identifiers:
	Built-in Data Types
	C Key Words-Rules & Guidelines for Naming Variables.

	Arithmetic operators and Expressions.
	Arithmetic expressions
	Modes of Arithmetic Expressions.

	Precedence and Order of Evaluation.
	Simple assignment statement
	Basic input/output statement
	Format specifier/ Conversion specifiers:
	scanf() function:
	printf() function
	getch()
	getche()
	getchar/fgetchar()
	gets()
	putch()
	puts()

	Simple 'C' programs.
	Algorithms – Definition and Characteristics.
	Simple algorithms.
	Flow chart – Type of flow chart.
	UNIT -2 : Decision making- Branching and Looping
	exp1 ? exp2 : exp3

